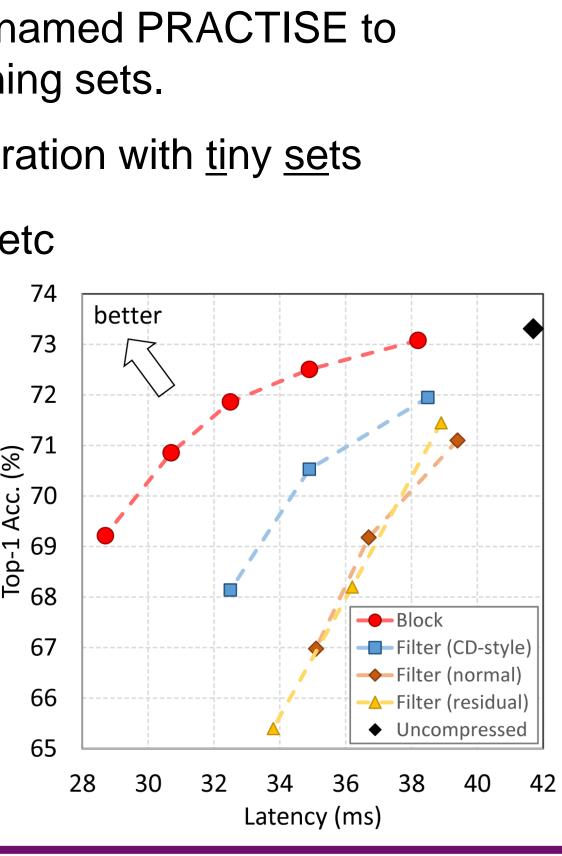


Paper

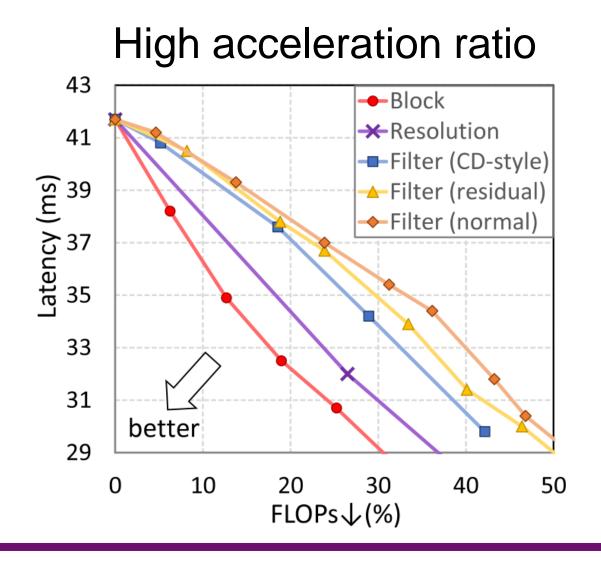
1. Introduction

- In this paper, we propose an algorithm named PRACTISE to accelerate deep networks with tiny training sets.
- PRACTISE: <u>practical network acceleration with tiny sets</u>
- Deep networks: ResNet, MobileNet, etc
- Tiny training sets: 50~1000 images
- Key property
 - High latency-accuracy performance
- Small training sets
- Robust to out-of-domain images
- Fast training (1.5 hours)



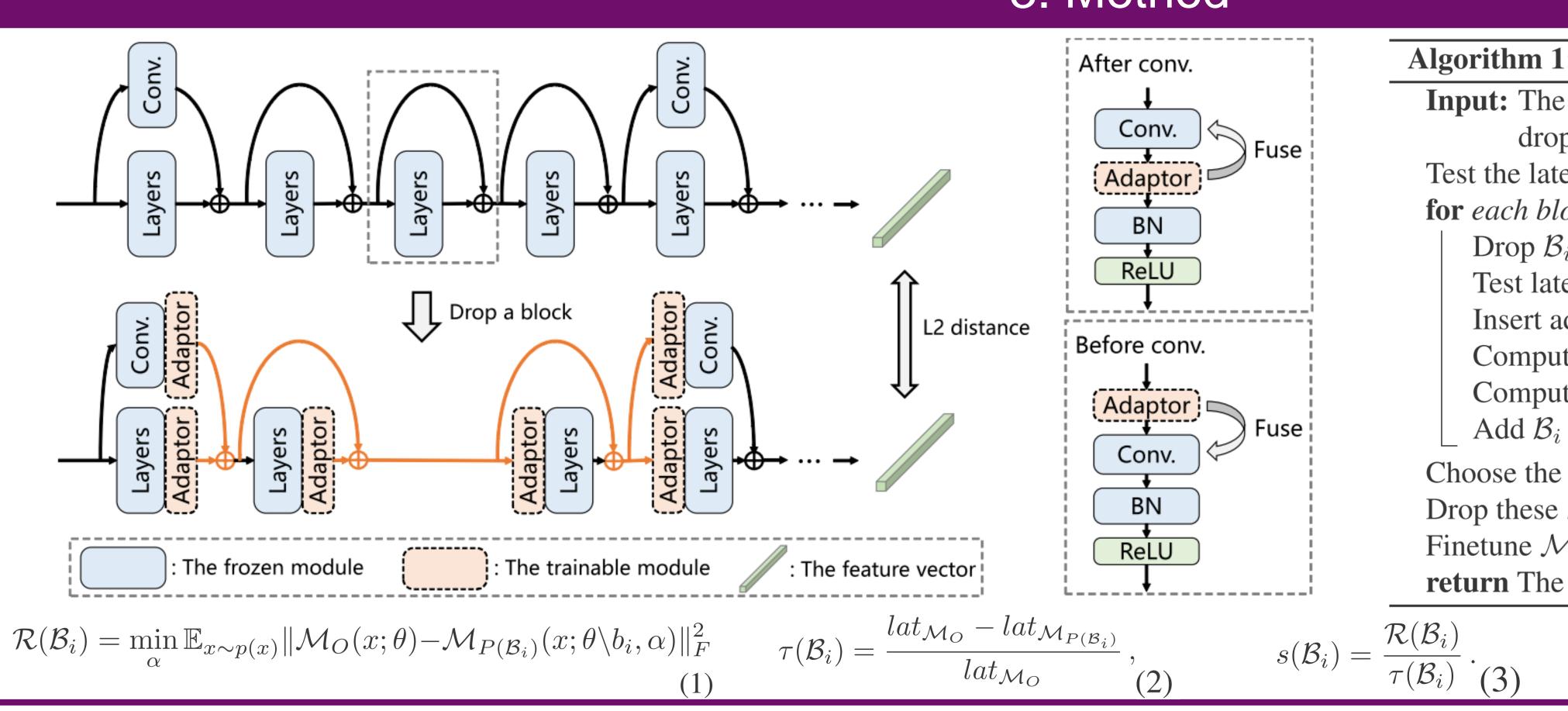
2. Motivation

- Latency-accuracy vs. FLOPs-accuracy: more practical
- Drop blocks: higher acceleration ratio, more convex optimization
- Recoverability: predict the finetuned acc. to prune blocks



Different criteria for dropping blocks w/o finetune w/ finetune 51 - <u>-</u>-CURL <mark>%</mark> 46 ···**×**·· ε-ResNet −■ -L2 distance ய் 41 ---- PRACTISE do 36

Practical Network Acceleration with Tiny Sets Jianxin Wu Guo-Hua Wang State Key Laboratory for Novel Software Technology, Nanjing University



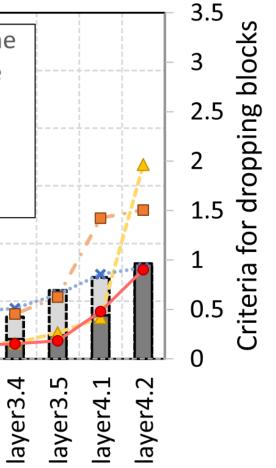
4. Experiments

Different criteria for dropping blocks

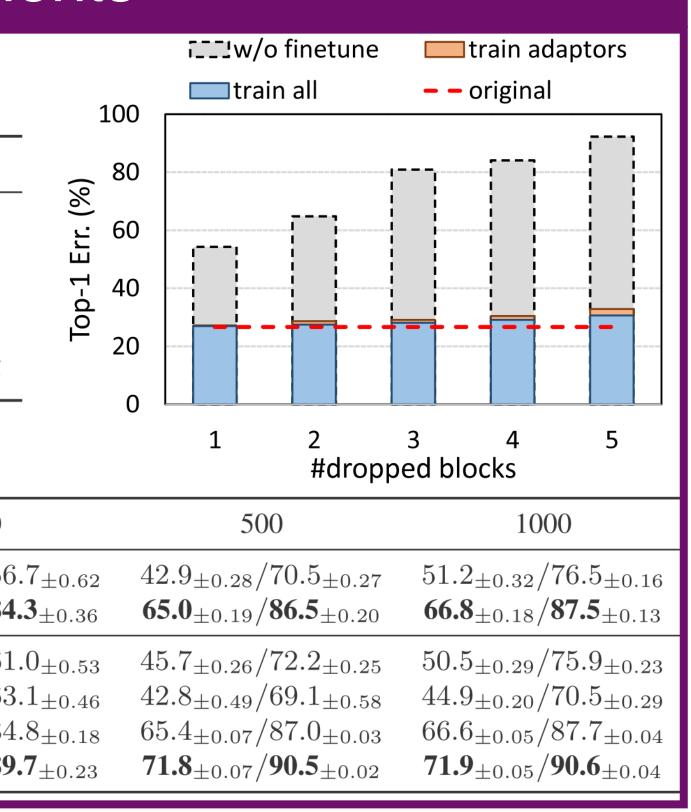
#Dropped blocks	1	2	3	4	5
Random	71.12	71.27	67.89	64.27	63.47
CURL [21]	72.33	71.08	69.14	65.48	64.97
ϵ -ResNet [34]	72.51	71.20	69.00	67.90	64.75
L2 distance	72.51	71.20	69.00	68.61	64.93
PRACTISE	73.02	72.52	71.92	70.86	69.35

ImageNet results

Method	Latency (ms)	50	100
BP (filter) BP (block)	33.8 (18.9% ↓) 32.5 (22.1 % ↓)	$\begin{array}{ } 24.2_{\pm 0.92}/52.7_{\pm 1.36} \\ 60.6_{\pm 0.62}/83.5_{\pm 0.42} \end{array}$	$27.6_{\pm 0.41}/56$ $61.6_{\pm 0.31}/84$
KD [10] FSKD [12] MiR [30] Practise	$\begin{vmatrix} 33.8 (18.9\% \downarrow) \\ 33.8 (18.9\% \downarrow) \\ 33.8 (18.9\% \downarrow) \\ 33.8 (18.9\% \downarrow) \\ 32.5 (22.1\% \downarrow) \end{vmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$33.1_{\pm 0.43}/61$ $36.6_{\pm 0.44}/63$ $62.1_{\pm 0.22}/84$ $70.4_{\pm 0.42}/89$



3. Method



5. Contributions & Conclusions

- tradeoff is more crucial in practice.
- compression.
- tiny sets of images.
- on average by 7.0%.

1: PRACTISE
e original model \mathcal{M}_O , the number of
opped blocks k, the tiny training data $\mathcal{D}_{\mathcal{T}}$
tency of \mathcal{M}_O ;
$lock \mathcal{B}_i \mathbf{do}$
\mathcal{B}_i to obtain the pruned model $\mathcal{M}_{P(\mathcal{B}_i)}$;
tency of $\mathcal{M}_{P(\mathcal{B}_i)}$ and find $\tau(\mathcal{B}_i)$ (Eq. 2);
adaptors;
ute $\mathcal{R}(\mathcal{B}_i)$ with $\mathcal{D}_{\mathcal{T}}$ (Eq. 1);
ute the score $s(\mathcal{B}_i)$ (Eq. 3);
S_i back and remove all adaptors;
e top k blocks with the minimum scores;
e k blocks to obtain \mathcal{M}_P ;
\mathcal{M}_P with $\mathcal{D}_{\mathcal{T}}$ by minimizing \mathcal{L} (Eq. 4);
e pruned model \mathcal{M}_P
•

 $\mathcal{L} = \|\mathcal{M}_O(x;\theta_O) - \mathcal{M}_P(x;\theta_P)\|_F^2, (4)$

Argue that the FLOPs-accuracy tradeoff is a misleading metric for few-shot compression, and advocate that the **latency-accuracy**

The first to reveal dropping blocks great potential in few-shot

Propose a new concept recoverability to measure the difficulty of recovering each block, and in determining the priority to drop blocks. Propose **PRACTISE**, an algorithm for accelerating networks with

The extraordinary performance: For 22.1% latency reduction, PRACTISE surpasses the previous state-of-the-art (SOTA) method